Bézier Curves and Surfaces
نویسنده
چکیده
Computer-aided geometric design (CAGD) is the design of geometrical shapes using computer technology, and is used extensively in many applications, such as the automotive, shipbuilding, and aerospace industries, architectural design, and computer animation. A popular way of modelling geometry in CAGD is to represent the outer surface, or curve, of the object as a patchwork of parametric polynomial pieces. Bézier curves and surfaces are a representation of such polynomial pieces that makes their interactive design easier and more intuitive than with other representations. They were developed in the 1960’s and 1970’s by Paul de Casteljau and Pierre Bézier, for use in the automotive industry.
منابع مشابه
TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملA Class of Quasi-Quartic Trigonometric BÉZier Curves and Surfaces
A new kind of quasi-quartic trigonometric polynomial base functions with a shape parameter λ over the space Ω=span {1, sint, cost, sint2t, cos2t} is presented, and the corresponding quasi-quartic trigonometric Bézier curves and surfaces are defined by the introduced base functions. The quasi-quartic trigonometric Bézier curves inherit most of properties similar to those of quartic Bézier curves...
متن کاملA de Casteljau Algorithm for Bernstein type Polynomials based on (p, q)-integers in CAGD
In this paper, a de Casteljau algorithm to compute (p, q)-Bernstein Bézier curves based on (p, q)integers is introduced. We study the nature of degree elevation and degree reduction for (p, q)-Bézier Bernstein functions. The new curves have some properties similar to q-Bézier curves. Moreover, we construct the corresponding tensor product surfaces over the rectangular domain (u, v) ∈ [0, 1]× [0...
متن کاملBezier curves and surfaces based on modified Bernstein polynomials
. Parametric curves are represented using these modified Bernstein basis and the concept of total positivity is applied to investigate the shape properties of the curve. We get Bézier curve defined on [0, 1] when we set the parameter α, β to the value 0. We also present a de Casteljau algorithm to compute Bernstein Bézier curves and surfaces with shifted knots. The new curves have some properti...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012